Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1377238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586584

RESUMO

The functional performance of immune cells relies on a complex transcriptional regulatory network. The three-dimensional structure of chromatin can affect chromatin status and gene expression patterns, and plays an important regulatory role in gene transcription. Currently available techniques for studying chromatin spatial structure include chromatin conformation capture techniques and their derivatives, chromatin accessibility sequencing techniques, and others. Additionally, the recently emerged deep learning technology can be utilized as a tool to enhance the analysis of data. In this review, we elucidate the definition and significance of the three-dimensional chromatin structure, summarize the technologies available for studying it, and describe the research progress on the chromatin spatial structure of dendritic cells, macrophages, T cells, B cells, and neutrophils.

2.
Cell Death Dis ; 15(3): 207, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472183

RESUMO

The pathogenesis of psoriasis, a chronic inflammatory autoimmune skin disease with a high global prevalence, remains unclear. We performed a high-resolution single-cell RNA sequencing analysis of 94,759 cells from 13 samples, including those from psoriasis model mice and wild-type mice. We presented a single-cell atlas of the skin of imiquimod-induced mice with psoriasis and WT mice, especially the heterogeneity of keratinocytes and fibroblasts. More interestingly, we discovered that special keratinocyte subtypes and fibroblast subtypes could interact with each other through epithelial-mesenchymal transition and validated the results with drug verification. Moreover, we conducted a tentative exploration of the potential pathways involved and revealed that the IL-17 signalling pathway may be the most relevant pathway. Collectively, we revealed the full-cycle landscape of key cells associated with psoriasis and provided a more comprehensive understanding of the pathogenesis of psoriasis.


Assuntos
Psoríase , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Queratinócitos/metabolismo , Psoríase/patologia , Pele/patologia , Transição Epitelial-Mesenquimal , Fibroblastos/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
3.
Cancer Lett ; 587: 216723, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342234

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignant disease. The epithelial-mesenchymal transition (EMT) is crucial in promoting ESCC development. However, the molecular heterogeneity of ESCC and the potential inhibitory strategies targeting EMT remain poorly understood. In this study, we analyzed high-resolution single-cell transcriptome data encompassing 209,231 ESCC cells from 39 tumor samples and 16 adjacent samples obtained from 44 individuals. We identified distinct cell populations exhibiting heterogeneous EMT characteristics and identified 87 EMT-associated molecules. The expression profiles of these EMT-associated molecules showed heterogeneity across different stages of ESCC progression. Moreover, we observed that EMT primarily occurred in early-stage tumors, before lymph node metastasis, and significantly promoted the rapid deterioration of ESCC. Notably, we identified SERPINH1 as a potential novel marker for ESCC EMT. By classifying ESCC patients based on EMT gene sets, we found that those with high EMT exhibited poorer prognosis. Furthermore, we predicted and experimentally validated drugs targeting ESCC EMT, including dactolisib, docetaxel, and nutlin, which demonstrated efficacy in inhibiting EMT and metastasis in ESCC. Through the integration of scRNA-seq, RNA-seq, and TCGA data with experimental validation, our comprehensive analysis elucidated the landscape of EMT during the entire course of ESCC development and metastasis. These findings provide valuable insights and a reference for refining ESCC clinical treatment strategies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proliferação de Células/genética , Prognóstico
4.
Cell Death Dis ; 15(1): 6, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177123

RESUMO

Glioma cell sensitivity to temozolomide (TMZ) is critical for effective treatment and correlates with patient survival, although mechanisms underlying this activity are unclear. Here, we reveal a new mechanism used by glioma cells to modulate TMZ sensitivity via regulation of SORBS2 and DDR1 genes by super-enhancer RNA LINC02454. We report that LINC02454 activity increases glioma cell TMZ sensitivity by maintaining long-range chromatin interactions between SORBS2 and the LINC02454 enhancer. By contrast, LINC02454 activity also decreased glioma cell TMZ sensitivity by promoting DDR1 expression. Our study suggests a bivalent function for super-enhancer RNA LINC02454 in regulating glioma cell sensitivity to TMZ.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , 60425 , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , MicroRNAs/genética , Proliferação de Células , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
6.
Nucleic Acids Res ; 49(20): 11575-11595, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34723340

RESUMO

Signaling pathway-driven target gene transcription is critical for fate determination of embryonic stem cells (ESCs), but enhancer-dependent transcriptional regulation in these processes remains poorly understood. Here, we report enhancer architecture-dependent multilayered transcriptional regulation at the Halr1-Hoxa1 locus that orchestrates retinoic acid (RA) signaling-induced early lineage differentiation of ESCs. We show that both homeobox A1 (Hoxa1) and Hoxa adjacent long non-coding RNA 1 (Halr1) are identified as direct downstream targets of RA signaling and regulated by RARA/RXRA via RA response elements (RAREs). Chromosome conformation capture-based screens indicate that RA signaling promotes enhancer interactions essential for Hoxa1 and Halr1 expression and mesendoderm differentiation of ESCs. Furthermore, the results also show that HOXA1 promotes expression of Halr1 through binding to enhancer; conversely, loss of Halr1 enhances interaction between Hoxa1 chromatin and four distal enhancers but weakens interaction with chromatin inside the HoxA cluster, leading to RA signaling-induced Hoxa1 overactivation and enhanced endoderm differentiation. These findings reveal complex transcriptional regulation involving synergistic regulation by enhancers, transcription factors and lncRNA. This work provides new insight into intrinsic molecular mechanisms underlying ESC fate determination during RA signaling-induced early differentiation.


Assuntos
Diferenciação Celular , Elementos Facilitadores Genéticos , Células-Tronco Embrionárias Murinas/metabolismo , Tretinoína/farmacologia , Animais , Linhagem Celular , Linhagem da Célula , Células Cultivadas , Montagem e Desmontagem da Cromatina , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
J Biol Chem ; 296: 100413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581110

RESUMO

Proper expression of Homeobox A cluster genes (HoxA) is essential for embryonic stem cell (ESC) differentiation and individual development. However, mechanisms controlling precise spatiotemporal expression of HoxA during early ESC differentiation remain poorly understood. Herein, we identified a functional CTCF-binding element (CBE+47) closest to the 3'-end of HoxA within the same topologically associated domain (TAD) in ESC. CRISPR-Cas9-mediated deletion of CBE+47 significantly upregulated HoxA expression and enhanced early ESC differentiation induced by retinoic acid (RA) relative to wild-type cells. Mechanistic analysis by chromosome conformation capture assay (Capture-C) revealed that CBE+47 deletion decreased interactions between adjacent enhancers, enabling formation of a relatively loose enhancer-enhancer interaction complex (EEIC), which overall increased interactions between that EEIC and central regions of HoxA chromatin. These findings indicate that CBE+47 organizes chromatin interactions between its adjacent enhancers and HoxA. Furthermore, deletion of those adjacent enhancers synergistically inhibited HoxA activation, suggesting that these enhancers serve as an EEIC required for RA-induced HoxA activation. Collectively, these results provide new insight into RA-induced HoxA expression during early ESC differentiation, also highlight precise regulatory roles of the CTCF-binding element in orchestrating high-order chromatin structure.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Animais , Fator de Ligação a CCCTC/fisiologia , Diferenciação Celular , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias/fisiologia , Elementos Facilitadores Genéticos/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Camundongos , Ativação Transcricional , Tretinoína/farmacologia
9.
Stem Cell Res ; 49: 102097, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271468

RESUMO

The developmental plasticity of embryonic stem cells (ESCs) is mainly controlled by well-characterized transcription factors, but additional factors, especially those related to metabolism that modulate this intrinsic program remain elusive. Here, using whole transcriptome analysis, we identified branched-chain amino acid aminotransferase-1(Bcat1) as highly-expressed in mouse ESCs and dramatically down-regulated upon differentiation. Bcat1 deletion impaired pluripotency and self-renewal in mouse ESCs, while Bcat1 overexpression resulted in robust ESC self-renewal and inhibition of differentiation. Whole genome bisulfite sequencing (WGBS) analysis showed that Bcat1 deletion altered whole genome methylation levels and hence gene expression in multiple pathways. Specifically, Bcat1 deletion increased expression of RAS protein activator like 1(Rasal1), leading to inactivation of Ras-Erk/MAPK signaling, while Rasal1 inhibition rescued defects seen in Bcat1 deleted cells. In summary, we demonstrate that Bcat1 is essential for mouse ESC self-renewal and pluripotency and that this effect is mediated by DNA methylation and the Ras signaling pathway.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Embrionárias Murinas , Transaminases/genética , Proteínas ras/metabolismo , Animais , Diferenciação Celular , Camundongos , Transdução de Sinais
10.
Mol Biol Rep ; 47(4): 2723-2733, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32180085

RESUMO

The long noncoding RNA HOTAIRM1 reportedly plays important roles in acute myeloid leukemia, gastric cancer and colorectal cancer. Here, we analyzed potential function of HOTAIRM1 in glioma and asked whether it participates in long-range chromatin interactions. We monitored expression of HOTAIRM1 in glioma tissues and correlated levels with patient survival using the TCGA dataset. HOTAIRM1 was highly expressed in glioma tissue, with high levels associated with shortened patient survival time. We then suppressed HOTAIRM1 activity in the human glioblastoma U251 line using CRISPR-cas9 to knock in a truncating polyA fragment. Reporter analysis of these and control cells confirmed that the HOTAIRM1 locus serves as an active enhancer. We then performed Capture-C analysis to identify target genes of that locus and applied RNA antisense purification to assess chromatin interactions between the HOTAIRM1 locus and HOXA cluster genes. HOTAIRM1 knockdown in glioma cells decreased proliferation and reduced expression of HOXA cluster genes. HOTAIRM1 regulates long-range interactions between the HOTAIRM1 locus and HOXA genes. Our work suggests a new mechanism by which HOTAIRM1 regulates glioma progression by regulating high-order chromatin structure and could suggest novel therapeutic targets to treat an intractable cancer.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cromatina/genética , Cromatina/metabolismo , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Proteínas de Homeodomínio/metabolismo , Humanos , MicroRNAs/metabolismo , Família Multigênica , RNA Longo não Codificante/genética
11.
Genome Res ; 30(2): 155-163, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31953347

RESUMO

Temozolomide (TMZ) is a frequently used chemotherapy for glioma; however, chemoresistance is a major problem limiting its effectiveness. Thus, knowledge of mechanisms underlying this outcome could improve patient prognosis. Here, we report that deletion of a regulatory element in the HOTAIR locus increases glioma cell sensitivity to TMZ and alters transcription of multiple genes. Analysis of a combination of RNA-seq, Capture Hi-C, and patient survival data suggests that CALCOCO1 and ZC3H10 are target genes repressed by the HOTAIR regulatory element and that both function in regulating glioma cell sensitivity to TMZ. Rescue experiments and 3C data confirmed this hypothesis. We propose a new regulatory mechanism governing glioma cell TMZ sensitivity.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte/genética , Glioma/tratamento farmacológico , RNA Longo não Codificante/genética , Temozolomida/farmacologia , Fatores de Transcrição/genética , Antineoplásicos Alquilantes/farmacologia , Sequência de Bases , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Glioma/genética , Glioma/patologia , Humanos , Proteínas de Neoplasias/genética
12.
BMC Genomics ; 20(1): 893, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752718

RESUMO

BACKGROUND: Parasitic insects are well-known biological control agents for arthropod pests worldwide. They are capable of regulating their host's physiology, development and behaviour. However, many of the molecular mechanisms involved in host-parasitoid interaction remain unknown. RESULTS: We sequenced the genomes of two parasitic wasps (Cotesia vestalis, and Diadromus collaris) that parasitize the diamondback moth Plutella xylostella using Illumina and Pacbio sequencing platforms. Genome assembly using SOAPdenovo produced a 178 Mb draft genome for C. vestalis and a 399 Mb draft genome for D. collaris. A total set that contained 11,278 and 15,328 protein-coding genes for C. vestalis and D. collaris, respectively, were predicted using evidence (homology-based and transcriptome-based) and de novo prediction methodology. Phylogenetic analysis showed that the braconid C. vestalis and the ichneumonid D. collaris diverged approximately 124 million years ago. These two wasps exhibit gene gains and losses that in some cases reflect their shared life history as parasitic wasps and in other cases are unique to particular species. Gene families with functions in development, nutrient acquisition from hosts, and metabolism have expanded in each wasp species, while genes required for biosynthesis of some amino acids and steroids have been lost, since these nutrients can be directly obtained from the host. Both wasp species encode a relative higher number of neprilysins (NEPs) thus far reported in arthropod genomes while several genes encoding immune-related proteins and detoxification enzymes were lost in both wasp genomes. CONCLUSIONS: We present the annotated genome sequence of two parasitic wasps C. vestalis and D. collaris, which parasitize a common host, the diamondback moth, P. xylostella. These data will provide a fundamental source for studying the mechanism of host control and will be used in parasitoid comparative genomics to study the origin and diversification of the parasitic lifestyle.


Assuntos
Genoma de Inseto , Mariposas/parasitologia , Vespas/genética , Animais , Genes de Insetos , Imunidade/genética , Família Multigênica , Filogenia , Vespas/classificação
13.
Nucleic Acids Res ; 47(13): 6737-6752, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31147716

RESUMO

Retinoic acid (RA) induces rapid differentiation of embryonic stem cells (ESCs), partly by activating expression of the transcription factor Hoxa1, which regulates downstream target genes that promote ESCs differentiation. However, mechanisms of RA-induced Hoxa1 expression and ESCs early differentiation remain largely unknown. Here, we identify a distal enhancer interacting with the Hoxa1 locus through a long-range chromatin loop. Enhancer deletion significantly inhibited expression of RA-induced Hoxa1 and endoderm master control genes such as Gata4 and Gata6. Transcriptome analysis revealed that RA-induced early ESCs differentiation was blocked in Hoxa1 enhancer knockout cells, suggesting a requirement for the enhancer. Restoration of Hoxa1 expression partly rescued expression levels of ∼40% of genes whose expression changed following enhancer deletion, and ∼18% of promoters of those rescued genes were directly bound by Hoxa1. Our data show that a distal enhancer maintains Hoxa1 expression through long-range chromatin loop and that Hoxa1 directly regulates downstream target genes expression and then orchestrates RA-induced early differentiation of ESCs. This discovery reveals mechanisms of a novel enhancer regulating RA-induced Hoxa genes expression and early ESCs differentiation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/biossíntese , Fatores de Transcrição/biossíntese , Tretinoína/farmacologia , Animais , Sistemas CRISPR-Cas , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Células-Tronco Embrionárias/efeitos dos fármacos , Endoderma/metabolismo , Elementos Facilitadores Genéticos/genética , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Ontologia Genética , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética
14.
BMC Genomics ; 19(1): 420, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848290

RESUMO

BACKGROUND: Parasitoid wasps are well-known natural enemies of major agricultural pests and arthropod borne diseases. The parasitoid wasp Macrocentrus cingulum (Hymenoptera: Braconidae) has been widely used to control the notorious insect pests Ostrinia furnacalis (Asian Corn Borer) and O. nubilalis (European corn borer). One striking phenomenon exhibited by M. cingulum is polyembryony, the formation of multiple genetically identical offspring from a single zygote. Moreover, M. cingulum employs a passive parasitic strategy by preventing the host's immune system from recognizing the embryo as a foreign body. Thus, the embryos evade the host's immune system and are not encapsulated by host hemocytes. Unfortunately, the mechanism of both polyembryony and immune evasion remains largely unknown. RESULTS: We report the genome of the parasitoid wasp M. cingulum. Comparative genomics analysis of M. cingulum and other 11 insects were conducted, finding some gene families with apparent expansion or contraction which might be linked to the parasitic behaviors or polyembryony of M. cingulum. Moreover, we present the evidence that the microRNA miR-14b regulates the polyembryonic development of M. cingulum by targeting the c-Myc Promoter-binding Protein 1 (MBP-1), histone-lysine N-methyltransferase 2E (KMT2E) and segmentation protein Runt. In addition, Hemomucin, an O-glycosylated transmembrane protein, protects the endoparasitoid wasp larvae from being encapsulated by host hemocytes. Motif and domain analysis showed that only the hemomucin in two endoparasitoids, M. cingulum and Venturia canescens, possessing the ability of passive immune evasion has intact mucin domain and similar O-glycosylation patterns, indicating that the hemomucin is a key factor modulating the immune evasion. CONCLUSIONS: The microRNA miR-14b participates in the regulation of polyembryonic development, and the O-glycosylation of the mucin domain in the hemomucin confers the passive immune evasion in this wasp. These key findings provide new insights into the polyembryony and immune evasion.


Assuntos
Embrião não Mamífero/embriologia , Genômica , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Evasão da Resposta Imune/genética , Vespas/embriologia , Vespas/genética , Animais , Anotação de Sequência Molecular , Filogenia
15.
Nat Commun ; 9(1): 2205, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880839

RESUMO

Parasitic wasps produce several factors including venom, polydnaviruses (PDVs) and specialized wasp cells named teratocytes that benefit the survival of offspring by altering the physiology of hosts. However, the underlying molecular mechanisms for the alterations remain unclear. Here we find that the teratocytes of Cotesia vestalis, an endoparasitoid of the diamondback moth Plutella xylostella, and its associated bracovirus (CvBV) can produce miRNAs and deliver the products into the host via different ways. Certain miRNAs in the parasitized host are mainly produced by teratocytes, while the expression level of miRNAs encoded by CvBV can be 100-fold greater in parasitized hosts than non-parasitized ones. We further show that one teratocyte-produced miRNA (Cve-miR-281-3p) and one CvBV-produced miRNA (Cve-miR-novel22-5p-1) arrest host growth by modulating expression of the host ecdysone receptor (EcR). Altogether, our results show the first evidence of cross-species regulation by miRNAs in animal parasitism and their possible function in the alteration of host physiology during parasitism.


Assuntos
Interações Hospedeiro-Parasita/genética , MicroRNAs/fisiologia , Mariposas/crescimento & desenvolvimento , Parasitos/genética , Polydnaviridae/genética , Vespas/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Larva/genética , Larva/virologia , Mariposas/parasitologia , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Vespas/virologia
16.
Sci Rep ; 7(1): 15870, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158595

RESUMO

Long non-coding RNA (lncRNA) is a class of noncoding RNA >200 bp in length that has essential roles in regulating a variety of biological processes. Here, we constructed a computational pipeline to identify lncRNA genes in the diamondback moth (Plutella xylostella), a major insect pest of cruciferous vegetables. In total, 3,324 lncRNAs corresponding to 2,475 loci were identified from 13 RNA-Seq datasets, including samples from parasitized, insecticide-resistant strains and different developmental stages. The identified P. xylostella lncRNAs had shorter transcripts and fewer exons than protein-coding genes. Seven out of nine randomly selected lncRNAs were validated by strand-specific RT-PCR. In total, 54-172 lncRNAs were specifically expressed in the insecticide resistant strains, among which one lncRNA was located adjacent to the sodium channel gene. In addition, 63-135 lncRNAs were specifically expressed in different developmental stages, among which three lncRNAs overlapped or were located adjacent to the metamorphosis-associated genes. These lncRNAs were either strongly or weakly co-expressed with their overlapping or neighboring mRNA genes. In summary, we identified thousands of lncRNAs and presented evidence that lncRNAs might have key roles in conferring insecticide resistance and regulating the metamorphosis development in P. xylostella.


Assuntos
Genoma de Inseto/genética , Metamorfose Biológica/genética , Mariposas/genética , RNA Longo não Codificante/genética , Animais , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Resistência a Inseticidas/genética , Inseticidas/efeitos adversos
17.
BMC Bioinformatics ; 18(1): 330, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28693417

RESUMO

BACKGROUND: Insecticide resistance is a substantial problem in controlling agricultural and medical pests. Detecting target site mutations is crucial to manage insecticide resistance. Though PCR-based methods have been widely used in this field, they are time-consuming and inefficient, and typically have a high false positive rate. Acetylcholinesterases (Ace) is the neural target of the widely used organophosphate (OP) and carbamate insecticides. However, there is not any software available to detect insecticide resistance associated mutations in RNA-Seq data at present. RESULTS: A computational pipeline ACE was developed to detect resistance mutations of ace in insect RNA-Seq data. Known ace resistance mutations were collected and used as a reference. We constructed a Web server for ACE, and the standalone software in both Linux and Windows versions is available for download. ACE was used to analyse 971 RNA-Seq data from 136 studies in 7 insect pests. The mutation frequency of each RNA-Seq dataset was calculated. The results indicated that the resistance frequency was 30%-44% in an eastern Ugandan Anopheles population, thus suggesting this resistance-conferring mutation has reached high frequency in these mosquitoes in Uganda. Analyses of RNA-Seq data from the diamondback moth Plutella xylostella indicated that the G227A mutation was positively related with resistance levels to organophosphate or carbamate insecticides. The wasp Nasonia vitripennis had a low frequency of resistant reads (<5%), but the agricultural pests Chilo suppressalis and Bemisia tabaci had a high resistance frequency. All ace reads in the 30 B. tabaci RNA-Seq data were resistant reads, suggesting that insecticide resistance has spread to very high frequency in B. tabaci. CONCLUSIONS: To the best of our knowledge, the ACE pipeline is the first tool to detect resistance mutations from RNA-Seq data, and it facilitates the full utilization of large-scale genetic data obtained by using next-generation sequencing.


Assuntos
Acetilcolinesterase/genética , Resistência a Inseticidas/genética , RNA/química , Software , Acetilcolinesterase/classificação , Acetilcolinesterase/metabolismo , Animais , Inseticidas/toxicidade , Mariposas/efeitos dos fármacos , Mariposas/genética , Mutação , Organofosfatos , Filogenia , RNA/genética , RNA/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA
18.
J Insect Physiol ; 98: 117-125, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28041944

RESUMO

Insects undergo metamorphosis, involving an abrupt change in body structure through cell growth and differentiation. Rice stem stripped borer (SSB), Chilo suppressalis, is one of the most destructive rice pests. However, little is known about the regulation mechanism of metamorphosis development in this notorious insect pest. Here, we studied the expression of 22,197 SSB genes at seven time points during pupa development with a customized microarray, identifying 622 differentially expressed genes (DEG) during pupa development. Gene ontology (GO) analysis of these DEGs indicated that the genes related to substance metabolism were highly expressed in the early pupa, which participate in the physiological processes of larval tissue disintegration at these stages. In comparison, highly expressed genes in the late pupal stages were mainly associated with substance biosynthesis, consistent with adult organ formation at these stages. There were 27 solute carrier (SLC) genes that were highly expressed during pupa development. We knocked down SLC22A3 at the prepupal stage, demonstrating that silencing SLC22A3 induced a deficiency in pupa stiffness and pigmentation. The RNAi-treated individuals had white and soft pupa, suggesting that this gene has an essential role in pupal development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Expressão Gênica , Proteínas de Insetos/genética , Metamorfose Biológica , Mariposas/fisiologia , Animais , Proteínas de Insetos/metabolismo , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Pigmentação , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/fisiologia
19.
Nucleic Acids Res ; 44(D1): D801-7, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26578584

RESUMO

The genomes and transcriptomes of hundreds of insects have been sequenced. However, insect community lacks an integrated, up-to-date collection of insect gene data. Here, we introduce the first release of InsectBase, available online at http://www.insect-genome.com. The database encompasses 138 insect genomes, 116 insect transcriptomes, 61 insect gene sets, 36 gene families of 60 insects, 7544 miRNAs of 69 insects, 96,925 piRNAs of Drosophila melanogaster and Chilo suppressalis, 2439 lncRNA of Nilaparvata lugens, 22,536 pathways of 78 insects, 678,881 untranslated regions (UTR) of 84 insects and 160,905 coding sequences (CDS) of 70 insects. This release contains over 12 million sequences and provides search functionality, a BLAST server, GBrowse, insect pathway construction, a Facebook-like network for the insect community (iFacebook), and phylogenetic analysis of selected genes.


Assuntos
Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genoma de Inseto , Insetos/genética , Animais , Genes de Insetos , Genômica , Insetos/classificação , Filogenia , Software
20.
BMC Genomics ; 16: 749, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26437919

RESUMO

BACKGROUND: The functional repertoire of long noncoding RNA (lncRNA) has been characterized in several model organisms, demonstrating that lncRNA plays important roles in fundamental biological processes. However, they remain largely unidentified in most species. Understanding the characteristics and functions of lncRNA in insects would be useful for insect resources utilization and sustainable pest control. METHODS: A computational pipeline was developed to identify lncRNA genes in the rice brown planthopper, Nilaparvata lugens, a destructive rice pest causing huge yield losses. Strand specific RT-PCR were used to determine the transcription orientation of lncRNAs. RESULTS: In total, 2,439 lncRNA transcripts corresponding to 1,882 loci were detected from 12 whole transcriptomes (RNA-seq) datasets, including samples from high fecundity (HFP), low fecundity (LFP), I87i and C89i populations, in addition Mudgo and TN1 virulence strains. The identified N. lugens lncRNAs had low sequence similarities with other known lncRNAs. However, their structural features were similar with mammalian counterparts. N. lugens lncRNAs had shorter transcripts than protein-coding genes due to the lower exon number though their exons and introns were longer. Only 19.9% of N. lugens lncRNAs had multiple alternatively spliced isoforms. We observed biases in the genome location of N. lugens lncRNAs. More than 30% of the lncRNAs overlapped with known protein-coding genes. These lncRNAs tend to be co-expressed with their neighboring genes (Pearson correlation, p < 0.01, T-test) and might interact with adjacent protein-coding genes. In total, 19-148 lncRNAs were specifically-expressed in the samples of HFP, LFP, Mudgo, TN1, I87i and C89i populations. Three lncRNAs specifically expressed in HFP and LFP populations overlapped with reproductive-associated genes. DISCUSSION: The structural features of N. lugens lncRNAs are similar to mammalian counterparts. Coexpression and function analysis suggeste that N. lugens lncRNAs might have important functions in high fecundity and virulence adaptability. CONCLUSIONS: This study provided the first catalog of lncRNA genes in rice brown planthopper. Gene expression and genome location analysis indicated that lncRNAs might play important roles in high fecundity and virulence adaptation in N. lugens.


Assuntos
Fertilidade/genética , Genoma de Inseto , Hemípteros/genética , Oryza/parasitologia , RNA Longo não Codificante , Virulência/genética , Processamento Alternativo , Animais , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ordem dos Genes , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/parasitologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...